Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569382

RESUMO

Spiders of Loxosceles genus are widely distributed and their venoms contain phospholipases D (PLDs), which degrade phospholipids and trigger inflammatory responses, dermonecrosis, hematological changes, and renal injuries. Biochemical, functional, and structural properties of three recombinant PLDs from L. intermedia, L. laeta, and L. gaucho, the principal species clinically relevant in South America, were analyzed. Sera against L. gaucho and L. laeta PLDs strongly cross-reacted with other PLDs, but sera against L. intermedia PLD mostly reacted with homologous molecules, suggesting underlying structural and functional differences. PLDs presented a similar secondary structure profile but distinct melting temperatures. Different methods demonstrated that all PLDs cleave sphingomyelin and lysophosphatidylcholine, but L. gaucho and L. laeta PLDs excelled. L. gaucho PLD showed greater "in vitro" hemolytic activity. L. gaucho and L. laeta PLDs were more lethal in assays with mice and crickets. Molecular dynamics simulations correlated their biochemical activities with differences in sequences and conformations of specific surface loops, which play roles in protein stability and in modulating interactions with the membrane. Despite the high similarity, PLDs from L. gaucho and L. laeta venoms are more active than L. intermedia PLD, requiring special attention from physicians when these two species prevail in endemic regions.


Assuntos
Fosfolipase D , Venenos de Aranha , Aranhas , Animais , Camundongos , Diester Fosfórico Hidrolases , Venenos de Aranha/química , América do Sul
2.
Toxins (Basel) ; 15(2)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36828423

RESUMO

Brown spider envenomation results in dermonecrosis, characterized by an intense inflammatory reaction. The principal toxins of brown spider venoms are phospholipase-D isoforms, which interact with different cellular membrane components, degrade phospholipids, and generate bioactive mediators leading to harmful effects. The Loxosceles intermedia phospholipase D, LiRecDT1, possesses a loop that modulates the accessibility to the active site and plays a crucial role in substrate. In vitro and in silico analyses were performed to determine aspects of this enzyme's substrate preference. Sphingomyelin d18:1/6:0 was the preferred substrate of LiRecDT1 compared to other Sphingomyelins. Lysophosphatidylcholine 16:0/0:0 was preferred among other lysophosphatidylcholines, but much less than Sphingomyelin d18:1/6:0. In contrast, phosphatidylcholine d18:1/16:0 was not cleaved. Thus, the number of carbon atoms in the substrate plays a vital role in determining the optimal activity of this phospholipase-D. The presence of an amide group at C2 plays a key role in recognition and activity. In silico analyses indicated that a subsite containing the aromatic residues Y228 and W230 appears essential for choline recognition by cation-π interactions. These findings may help to explain why different cells, with different phospholipid fatty acid compositions exhibit distinct susceptibilities to brown spider venoms.


Assuntos
Fosfolipase D , Venenos de Aranha , Aranhas , Animais , Esfingomielinas/metabolismo , Diester Fosfórico Hidrolases/química , Fosfolipase D/metabolismo , Venenos de Aranha/química , Fosfolipídeos/metabolismo , Lisofosfatidilcolinas , Aranhas/metabolismo
3.
Toxicon ; 212: 1-7, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35346694

RESUMO

We present the case of a 32-year-old male patient hospitalized during the COVID-19 pandemic because of a Brown spider bite on his lower lip. The Brown spider accident occurred in southern Brazil; at hospital admission, the patient presented on his lip: edema, pustules, necrotic regions, and ulcerations. The patient complained of lower back pain, fever and dyspnea. Laboratory tests showed monocytosis, leukocytosis, neutrophilia, increased D-dimer levels, C-reactive protein, glutamate-pyruvate transaminase, delta bilirubin, creatine phosphokinase, procalcitonin, and fibrinogen. The patient was hospitalized and a multi-professional team carried out the treatment. The medical team diagnosed loxoscelism with moderate changes. The dentist treated the oral cavity. The patient began to develop nausea, vomiting, and desaturation episodes during hospitalization. A computed tomography of the chest was performed, which showed signs of viral infection. The RT-PCR test for COVID-19 was positive. The systemic conditions worsened (renal dysfunction, systemic inflammatory response, pulmonary complications). This condition may have resulted from the association of the two diseases (loxoscelism and COVID-19), leading to the patient's death. This case illustrates the difficulties and risks in treating patients with venomous animal accidents during the pandemic, and the importance of a multi-professional team in treating such cases.


Assuntos
COVID-19 , Picaduras de Aranhas , Venenos de Aranha , Aranhas , Animais , Aranha Marrom Reclusa , Humanos , Masculino , Pandemias , Picaduras de Aranhas/diagnóstico , Picaduras de Aranhas/terapia
4.
Toxins (Basel) ; 15(1)2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36668837

RESUMO

Bites of Loxosceles spiders can lead to a set of clinical manifestations called loxoscelism, and are considered a public health problem in many regions. The signs and symptoms of loxoscelism are divided into cutaneous and systemic forms. The former is more frequent and includes signs of envenoming at the bite site or neighboring regions. Systemic loxoscelism, although much less frequent, is associated with complications, and can even lead to death. It may include intravascular hemolysis, acute renal failure, and thrombocytopenia. Loxosceles venoms are enriched with phospholipases D (PLDs), which are a family of isoforms found at intra-species and inter-species levels. Under experimental conditions, these enzymes reproduce the main clinical signs of loxoscelism, including an exacerbated inflammatory response at the bite site and dermonecrosis, as well as thrombocytopenia, intravascular hemolysis, and acute renal failure. The role of PLDs in cutaneous loxoscelism was described over forty years ago, when studies identified and purified toxins featured as sphingomyelinase D. More recently, the production of recombinant PLDs and discoveries about their structure and mechanism has enabled a deeper characterization of these enzymes. In this review, we describe these biochemical and functional features of Loxosceles PLDs that determine their involvement in systemic loxoscelism.


Assuntos
Fosfolipase D , Picaduras de Aranhas , Venenos de Aranha , Aranhas , Trombocitopenia , Animais , Hemólise , Diester Fosfórico Hidrolases/toxicidade , Fosfolipase D/química , Venenos de Aranha/toxicidade , Venenos de Aranha/química , Isoformas de Proteínas , Aranhas/química , Picaduras de Aranhas/complicações
5.
Biomedicines ; 11(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36672587

RESUMO

Loxoscelism is the clinical condition triggered after the bite of spiders of the genus Loxosceles. The main species involved in accidents in South America are L. intermedia, L. laeta, and L. gaucho. The only specific treatment is the anti-Loxosceles serum produced with crude venoms. As phospholipases D (PLDs) trigger most of the effects observed in accidents, we developed and evaluated second-generation sera using mutated PLDs as antigens. Three isoforms of PLDs with site-directed mutations without biological activities were used for rabbit immunizations: D32A-E34A (L. gaucho), W230A (L. intermedia), and H12A-H47A (L. laeta). Sera were produced using crude venoms of three species of Loxosceles enriched with mutated recombinant PLDs (MIX) or using only mutated PLDs (REC). Immunizations stimulated the immune system from the second immunization with higher antibody production in the REC group. In vivo neutralization assays demonstrated that both sera reduced edema and dermonecrosis caused by Loxosceles intermedia crude venom. Follow-up of animals during the immunization protocols and in the neutralization assays demonstrated that the mutated proteins and the sera are safe. Results demonstrate the potential of using mutated recombinant PLDs in total or partial replacement of Loxosceles venoms in animal immunizations to produce anti-Loxosceles sera for treatments of Loxoscelism.

6.
Int J Biol Macromol ; 192: 757-770, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634338

RESUMO

Accidents involving Brown spiders are reported throughout the world. In the venom, the major toxins involved in the deleterious effects are phospholipases D (PLDs). In this work, recombinant mutated phospholipases D from three endemic species medically relevant in South America (Loxosceles intermedia, L. laeta and L. gaucho) were tested as antigens in a vaccination protocol. In such isoforms, key amino acid residues involved in catalysis, magnesium-ion coordination, and binding to substrates were replaced by Alanine (H12A-H47A, E32A-D34A and W230A). These mutations eliminated the phospholipase activity and reduced the generation of skin necrosis and edema to residual levels. Molecular modeling of mutated isoforms indicated that the three-dimensional structures, topologies, and surface charges did not undergo significant changes. Mutated isoforms were recognized by sera against the crude venoms. Vaccination protocols in rabbits using mutated isoforms generated a serum that recognized the native PLDs of crude venoms and neutralized dermonecrosis and edema induced by L. intermedia venom. Vaccination of mice prevented the lethal effects of L. intermedia crude venom. Furthermore, vaccination of rabbits prevented the cutaneous lesion triggered by the three venoms. These results indicate a great potential for mutated recombinant PLDs to be employed as antigens in developing protective vaccines for Loxoscelism.


Assuntos
Aranha Marrom Reclusa , Proteínas Mutantes/imunologia , Fosfolipase D/imunologia , Picaduras de Aranhas/imunologia , Picaduras de Aranhas/terapia , Vacinas/imunologia , Acidentes , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antivenenos/sangue , Antivenenos/imunologia , Biomarcadores , Modelos Animais de Doenças , Imunogenicidade da Vacina , Contagem de Leucócitos , Camundongos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Testes de Neutralização , Fosfolipase D/química , Fosfolipase D/genética , Coelhos , Picaduras de Aranhas/diagnóstico , Picaduras de Aranhas/prevenção & controle , Venenos de Aranha/imunologia , Relação Estrutura-Atividade , Resultado do Tratamento , Vacinação , Vacinas/administração & dosagem
7.
Artigo em Inglês | MEDLINE | ID: mdl-34377142

RESUMO

Accidents caused by the bites of brown spiders (Loxosceles) generate a clinical condition that often includes a threatening necrotic skin lesion near the bite site along with a remarkable inflammatory response. Systemic disorders such as hemolysis, thrombocytopenia, and acute renal failure may occur, but are much less frequent than the local damage. It is already known that phospholipases D, highly expressed toxins in Loxosceles venom, can induce most of these injuries. However, this spider venom has a great range of toxins that probably act synergistically to enhance toxicity. The other protein classes remain poorly explored due to the difficulty in obtaining sufficient amounts of them for a thorough investigation. They include astacins (metalloproteases), serine proteases, knottins, translationally controlled tumor proteins (TCTP), hyaluronidases, allergens and serpins. It has already been shown that some of them, according to their characteristics, may participate to some extent in the development of loxoscelism. In addition, all of these toxins present potential application in several areas. The present review article summarizes information regarding some functional aspects of the protein classes listed above, discusses the directions that could be taken to materialize a comprehensive investigation on each of these toxins as well as highlights the importance of exploring the full venom repertoire.

8.
Front Mol Biosci ; 8: 706704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222343

RESUMO

Brown spider (genus Loxosceles) venoms are mainly composed of protein toxins used for predation and defense. Bites of these spiders most commonly produce a local dermonecrotic lesion with gravitational spread, edema and hemorrhage, which together are defined as cutaneous loxoscelism. Systemic loxoscelism, such as hematological abnormalities and renal injury, are less frequent but more lethal. Some Loxosceles venom toxins have already been isolated and extensively studied, such as phospholipases D (PLDs), which have been recombinantly expressed and were proven to reproduce toxic activities associated to the whole venom. PLDs have a notable potential to be engineered and converted in non-toxic antigens to produce a new generation of antivenoms or vaccines. PLDs also can serve as tools to discover inhibitors to be used as therapeutic agents. Other Loxosceles toxins have been identified and functionally characterized, such as hyaluronidases, allergen factor, serpin, TCTP and knottins (ICK peptides). All these toxins were produced as recombinant molecules and are biologically active molecules that can be used as tools for the potential development of chemical candidates to tackle many medical and biological threats, acting, for instance, as antitumoral, insecticides, analgesic, antigens for allergy tests and biochemical reagents for cell studies. In addition, these recombinant toxins may be useful to develop a rational therapy for loxoscelism. This review summarizes the main candidates for the development of drugs and biotechnological inputs that have been described in Brown spider venoms.

9.
Int J Biol Macromol ; 183: 1607-1620, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34029585

RESUMO

Several classes of toxins are present in the venom of Brown spiders (Loxosceles genus), some of them are highly expressed and others are less expressed. In this work, we aimed to clone the sequence of a little expressed novel toxin from Loxosceles venom identified as a serine protease inhibitor (serpin), as well as to express and characterize its biochemical and biological properties. It was named LSPILT, derived from Loxoscelesserine protease inhibitor-like toxin. Multiple alignment analysis revealed high identity between LSPILT and other serpin molecules from spiders and crab. LSPILT was produced in baculovirus-infected insect cells, resulting in a 46-kDa protein fused to a His-tag. Immunological assays showed epitopes in LSPILT that resemble native venom toxins of Loxosceles spiders. The inhibitory activity of LSPILT on trypsin was found both by reverse zymography and fluorescent gelatin-degradation assay. Additionally, LSPILT inhibited the complement-dependent lysis of Trypanosoma cruzi epimastigotes, reduced thrombin-dependent clotting and suppressed B16-F10 melanoma cells migration. Results described herein prove the existence of conserved serpin-like toxins in Loxosceles venoms. The availability of a recombinant serpin enabled the determination of its biological and biochemical properties and indicates potential applications in future studies regarding the pathophysiology of the envenoming or for biotechnological purposes.


Assuntos
Antineoplásicos/farmacologia , Fibrinolíticos/farmacologia , Serpinas/genética , Serpinas/metabolismo , Aranhas/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Baculoviridae , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Clonagem Molecular , Camundongos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Coelhos , Células Sf9 , Venenos de Aranha/genética , Venenos de Aranha/metabolismo , Aranhas/genética , Tripsina
10.
Biomedicines ; 9(3)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801128

RESUMO

Phospholipases-D (PLDs) found in Loxosceles spiders' venoms are responsible for the dermonecrosis triggered by envenomation. PLDs can also induce other local and systemic effects, such as massive inflammatory response, edema, and hemolysis. Recombinant PLDs reproduce all of the deleterious effects induced by Loxosceles whole venoms. Herein, wild type and mutant PLDs of two species involved in accidents-L. gaucho and L. laeta-were recombinantly expressed and characterized. The mutations are related to amino acid residues relevant for catalysis (H12-H47), magnesium ion coordination (E32-D34) and binding to phospholipid substrates (Y228 and Y228-Y229-W230). Circular dichroism and structural data demonstrated that the mutant isoforms did not undergo significant structural changes. Immunoassays showed that mutant PLDs exhibit conserved epitopes and kept their antigenic properties despite the mutations. Both in vitro (sphingomyelinase activity and hemolysis) and in vivo (capillary permeability, dermonecrotic activity, and histopathological analysis) assays showed that the PLDs with mutations H12-H47, E32-D34, and Y228-Y229-W230 displayed only residual activities. Results indicate that these mutant toxins are suitable for use as antigens to obtain neutralizing antisera with enhanced properties since they will be based on the most deleterious toxins in the venom and without causing severe harmful effects to the animals in which these sera are produced.

11.
Enzyme Microb Technol ; 146: 109759, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33812558

RESUMO

Hyaluronidases are low expressed toxins of brown spider venoms, but, as highly active molecules, they present an important role as spreading factors. By degrading extracellular matrix components, these enzymes favor the diffusion of toxins in the affected tissue and at systemic level. Here, a novel isoform of hyaluronidase of Loxosceles intermedia Mello-Leitão (1934) venom was cloned, expressed in a baculovirus-insect cell expression system and fully active purified. This recombinant enzyme, named LiHyal2 (Loxosceles intermedia Hyaluronidase isoform 2), shares high identity with hyaluronidases of other spiders and scorpions. The catalytic and sugar binding amino acid residues are conserved in LiHyal2, human, and honeybee venom hyaluronidases and the molecular model of LiHyal2 shares major similarities with their crystal structures, including the active site. LiHyal2 was expressed as a 45 kDa protein and degraded hyaluronic acid (HA) and chondroitin sulphate as demonstrated by HA zymography and agarose gel electrophoresis. Lectin blot analysis revealed that LiHyal2 is post-translationally modified by the addition of high mannose N-linked carbohydrates. In vivo experiments showed that LiHyal2 potentialize dermonecrosis and edema induced by a recombinant phospholipase-D (PLD) of L. intermedia venom, as well as enhance the increase in capillary permeability triggered by this PLD, indicating that these toxins act synergistically during envenomation. Altogether, these results introduce a novel approach to express spider recombinant toxins, contribute to the elucidation of brown spider venom mechanisms and add to the development of a more specific treatment of envenomation victims.


Assuntos
Hialuronoglucosaminidase , Fosfolipase D , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Domínio Catalítico , Humanos , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Insetos/metabolismo , Diester Fosfórico Hidrolases
12.
J. venom. anim. toxins incl. trop. dis ; 27: e20200188, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1279408

RESUMO

Accidents caused by the bites of brown spiders (Loxosceles) generate a clinical condition that often includes a threatening necrotic skin lesion near the bite site along with a remarkable inflammatory response. Systemic disorders such as hemolysis, thrombocytopenia, and acute renal failure may occur, but are much less frequent than the local damage. It is already known that phospholipases D, highly expressed toxins in Loxosceles venom, can induce most of these injuries. However, this spider venom has a great range of toxins that probably act synergistically to enhance toxicity. The other protein classes remain poorly explored due to the difficulty in obtaining sufficient amounts of them for a thorough investigation. They include astacins (metalloproteases), serine proteases, knottins, translationally controlled tumor proteins (TCTP), hyaluronidases, allergens and serpins. It has already been shown that some of them, according to their characteristics, may participate to some extent in the development of loxoscelism. In addition, all of these toxins present potential application in several areas. The present review article summarizes information regarding some functional aspects of the protein classes listed above, discusses the directions that could be taken to materialize a comprehensive investigation on each of these toxins as well as highlights the importance of exploring the full venom repertoire.(AU)


Assuntos
Animais , Venenos de Aranha/toxicidade , Aranhas , Serpinas , Serina Proteases , Mordeduras e Picadas
13.
Int J Biol Macromol ; 164: 3984-3999, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871121

RESUMO

Bites evoked by Brown spiders (Loxosceles genus) are associated with skin injuries (cutaneous rash, itching, swelling, erythema and dermonecrosis) and systemic manifestations. Transcriptome analyses of Loxosceles venom glands showed that the venom has a complex composition containing toxins such as phospholipases-D, metalloproteases and hyaluronidases. Here, by screening the RNA from L. intermedia venom glands, we cloned a novel allergen toxin, and named LALLT (LoxoscelesAllergen-Like Toxin). Sequence analysis showed that LALLT is closely related to allergens from other spiders and RNA screening indicated the presence of LALLT orthologues in the venom of other Loxosceles spiders. Recombinant LALLT was expressed (~45 kDa) in baculovirus-infected insect cells and purified by affinity chromatography. Antibodies against different Loxosceles venoms cross-reacted with LALLT and antibodies against LALLT recognized three Loxosceles venoms, revealing epitopes identity. LALLT triggered paw edema in mice and erythema, edema and leukocyte infiltration into the dermis of rabbit skin. Also, LALLT induced vascular permeability in mice, degranulation of rat mesentery mast cells, as well as prompted degranulation and increased calcium influx in RBL-2H3 cells. Data reported suggest for the first time the existence of allergens in Loxosceles venoms and make LALLT available for clinical studies about allergenic events arisen by Loxosceles envenoming.


Assuntos
Alérgenos/química , Alérgenos/imunologia , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/imunologia , Proteínas Recombinantes , Venenos de Aranha/química , Venenos de Aranha/imunologia , Alérgenos/genética , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Degranulação Celular/imunologia , Clonagem Molecular , Expressão Gênica , Vetores Genéticos/genética , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Diester Fosfórico Hidrolases/genética , Coelhos , Células Sf9 , Venenos de Aranha/genética
14.
Toxins (Basel) ; 12(3)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155765

RESUMO

Spiders of the genus Loxosceles, popularly known as Brown spiders, are considered a serious public health issue, especially in regions of hot or temperate climates, such as parts of North and South America. Although the venoms of these arachnids are complex in molecular composition, often containing proteins with distinct biochemical characteristics, the literature has primarily described a family of toxins, the Phospholipases-D (PLDs), which are highly conserved in all Loxosceles species. PLDs trigger most of the major clinical symptoms of loxoscelism i.e., dermonecrosis, thrombocytopenia, hemolysis, and acute renal failure. The key role played by PLDs in the symptomatology of loxoscelism was first described 40 years ago, when researches purified a hemolytic toxin that cleaved sphingomyelin and generated choline, and was referred to as a Sphingomyelinase-D, which was subsequently changed to Phospholipase-D when it was demonstrated that the enzyme also cleaved other cellular phospholipids. In this review, we present the information gleaned over the last 40 years about PLDs from Loxosceles venoms especially with regard to the production and characterization of recombinant isoforms. The history of obtaining these toxins is discussed, as well as their molecular organization and mechanisms of interaction with their substrates. We will address cellular biology aspects of these toxins and how they can be used in the development of drugs to address inflammatory processes and loxoscelism. Present and future aspects of loxoscelism diagnosis will be discussed, as well as their biotechnological applications and actions expected for the future in this field.


Assuntos
Fosfolipase D/história , Diester Fosfórico Hidrolases/história , Venenos de Aranha/história , Animais , Catálise , História do Século XX , História do Século XXI , Humanos , Fosfolipase D/química , Fosfolipase D/farmacologia , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/farmacologia , Proteômica , Proteínas Recombinantes/farmacologia , Picaduras de Aranhas/diagnóstico , Picaduras de Aranhas/tratamento farmacológico , Picaduras de Aranhas/enzimologia , Venenos de Aranha/química , Venenos de Aranha/farmacologia
15.
Toxins (Basel) ; 11(6)2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248109

RESUMO

Brown spider envenomation results in dermonecrosis with gravitational spreading characterized by a marked inflammatory reaction and with lower prevalence of systemic manifestations such as renal failure and hematological disturbances. Several toxins make up the venom of these species, and they are mainly peptides and proteins ranging from 5-40 kDa. The venoms have three major families of toxins: phospholipases-D, astacin-like metalloproteases, and the inhibitor cystine knot (ICK) peptides. Serine proteases, serpins, hyaluronidases, venom allergens, and a translationally controlled tumor protein (TCTP) are also present. Toxins hold essential biological properties that enable interactions with a range of distinct molecular targets. Therefore, the application of toxins as research tools and clinical products motivates repurposing their uses of interest. This review aims to discuss possibilities for brown spider venom toxins as putative models for designing molecules likely for therapeutics based on the status quo of brown spider venoms. Herein, we explore new possibilities for the venom components in the context of their biochemical and biological features, likewise their cellular targets, three-dimensional structures, and mechanisms of action.


Assuntos
Diester Fosfórico Hidrolases , Venenos de Aranha , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Humanos , Imunoterapia , Inseticidas/farmacologia , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/farmacologia , Proteínas Recombinantes/farmacologia , Inibidores de Serino Proteinase/farmacologia , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Proteína Tumoral 1 Controlada por Tradução
16.
Artigo em Inglês | MEDLINE | ID: mdl-28194160

RESUMO

Brown spiders are venomous arthropods that use their venom for predation and defense. In humans, bites of these animals provoke injuries including dermonecrosis with gravitational spread of lesions, hematological abnormalities and impaired renal function. The signs and symptoms observed following a brown spider bite are called loxoscelism. Brown spider venom is a complex mixture of toxins enriched in low molecular mass proteins (4-40 kDa). Characterization of the venom confirmed the presence of three highly expressed protein classes: phospholipases D, metalloproteases (astacins) and insecticidal peptides (knottins). Recently, toxins with low levels of expression have also been found in Loxosceles venom, such as serine proteases, protease inhibitors (serpins), hyaluronidases, allergen-like toxins and histamine-releasing factors. The toxin belonging to the phospholipase-D family (also known as the dermonecrotic toxin) is the most studied class of brown spider toxins. This class of toxins single-handedly can induce inflammatory response, dermonecrosis, hemolysis, thrombocytopenia and renal failure. The functional role of the hyaluronidase toxin as a spreading factor in loxoscelism has also been demonstrated. However, the biological characterization of other toxins remains unclear and the mechanism by which Loxosceles toxins exert their noxious effects is yet to be fully elucidated. The aim of this review is to provide an insight into brown spider venom toxins and toxicology, including a description of historical data already available in the literature. In this review article, the identification processes of novel Loxosceles toxins by molecular biology and proteomic approaches, their biological characterization and structural description based on x-ray crystallography and putative biotechnological uses are described along with the future perspectives in this field.

17.
J Cell Biochem ; 118(4): 726-738, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27563734

RESUMO

Loxoscelism refers to the clinical symptoms that develop after brown spider bites. Brown spider venoms contain several phospholipase-D isoforms, which are the main toxins responsible for both the cutaneous and systemic effects of loxoscelism. Understanding of the phospholipase-D catalytic mechanism is crucial for the development of specific treatment that could reverse the toxic effects caused by the spider bite. Based on enzymatic, biological, structural, and thermodynamic tests, we show some features suitable for designing drugs against loxoscelism. Firstly, through molecular docking and molecular dynamics predictions, we found three different molecules (Suramin, Vu0155056, and Vu0359595) that were able to bind the enzyme's catalytic site and interact with catalytically important residues (His12 or His47) and with the Mg2+ co-factor. The binding promoted a decrease in the recombinant brown spider venom phospholipase-D (LiRecDT1) enzymatic activity. Furthermore, the presence of the inhibitors reduced the hemolytic, dermonecrotic, and inflammatory activities of the venom toxin in biological assays. Altogether, these results indicate the mode of action of three different LiRecDT1 inhibitors, which were able to prevent the venom toxic effects. This strengthen the idea of the importance of designing a specific drug to treat the serious clinical symptoms caused by the brown spider bite, a public health problem in several parts of the world, and until now without specific treatment. J. Cell. Biochem. 118: 726-738, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Artrópodes/antagonistas & inibidores , Aranha Marrom Reclusa/enzimologia , Desenho de Fármacos , Fosfolipase D/antagonistas & inibidores , Venenos de Aranha/antagonistas & inibidores , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Benzimidazóis/farmacologia , Aranha Marrom Reclusa/genética , Aranha Marrom Reclusa/patogenicidade , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Necrose , Fosfolipase D/química , Fosfolipase D/genética , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Piperidinas/farmacologia , Coelhos , Proteínas Recombinantes/genética , Pele/efeitos dos fármacos , Pele/patologia , Picaduras de Aranhas/tratamento farmacológico , Picaduras de Aranhas/enzimologia , Venenos de Aranha/química , Venenos de Aranha/genética , Suramina/farmacologia
18.
J Cell Biochem ; 118(8): 2053-2063, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27808444

RESUMO

Sphingomyelinases D have only been identified in arachnid venoms, Corynebacteria, Arcanobacterium, Photobacterium and in the fungi Aspergillus and Coccidioides. The arachnid and bacterial enzymes share very low sequence identity and do not contain the HKD sequence motif characteristic of the phospholipase D superfamily, however, molecular modeling and circular dichroism of SMases D from Loxosceles intermedia and Corynebacterium pseudotuberculosis indicate similar folds. The phospholipase, hemolytic and necrotic activities and mice vessel permeabilities were compared and both enzymes possess the ability to hydrolyze phospholipids and also promote similar pathological reactions in the host suggesting the existence of a common underlying mechanism in tissue disruption. J. Cell. Biochem. 118:2053-2063, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Artrópodes/toxicidade , Proteínas de Bactérias/toxicidade , Permeabilidade Capilar/efeitos dos fármacos , Corynebacterium pseudotuberculosis/química , Diester Fosfórico Hidrolases/toxicidade , Aranhas/química , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Corynebacterium pseudotuberculosis/enzimologia , Corynebacterium pseudotuberculosis/patogenicidade , Eritrócitos/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Hemólise/efeitos dos fármacos , Cavalos , Humanos , Camundongos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Carneiro Doméstico , Pele/efeitos dos fármacos , Pele/patologia , Aranhas/enzimologia , Aranhas/patogenicidade
19.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954813

RESUMO

Abstract Brown spiders are venomous arthropods that use their venom for predation and defense. In humans, bites of these animals provoke injuries including dermonecrosis with gravitational spread of lesions, hematological abnormalities and impaired renal function. The signs and symptoms observed following a brown spider bite are called loxoscelism. Brown spider venom is a complex mixture of toxins enriched in low molecular mass proteins (4-40 kDa). Characterization of the venom confirmed the presence of three highly expressed protein classes: phospholipases D, metalloproteases (astacins) and insecticidal peptides (knottins). Recently, toxins with low levels of expression have also been found in Loxosceles venom, such as serine proteases, protease inhibitors (serpins), hyaluronidases, allergen-like toxins and histamine-releasing factors. The toxin belonging to the phospholipase-D family (also known as the dermonecrotic toxin) is the most studied class of brown spider toxins. This class of toxins single-handedly can induce inflammatory response, dermonecrosis, hemolysis, thrombocytopenia and renal failure. The functional role of the hyaluronidase toxin as a spreading factor in loxoscelism has also been demonstrated. However, the biological characterization of other toxins remains unclear and the mechanism by which Loxosceles toxins exert their noxious effects is yet to be fully elucidated. The aim of this review is to provide an insight into brown spider venom toxins and toxicology, including a description of historical data already available in the literature. In this review article, the identification processes of novel Loxosceles toxins by molecular biology and proteomic approaches, their biological characterization and structural description based on x-ray crystallography and putative biotechnological uses are described along with the future perspectives in this field.(AU)


Assuntos
Animais , Venenos de Aranha , Aranhas , Toxicologia , Metaloproteases , Serina Proteases
20.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484692

RESUMO

Abstract Brown spiders are venomous arthropods that use their venom for predation and defense. In humans, bites of these animals provoke injuries including dermonecrosis with gravitational spread of lesions, hematological abnormalities and impaired renal function. The signs and symptoms observed following a brown spider bite are called loxoscelism. Brown spider venom is a complex mixture of toxins enriched in low molecular mass proteins (440 kDa). Characterization of the venom confirmed the presence of three highly expressed protein classes: phospholipases D, metalloproteases (astacins) and insecticidal peptides (knottins). Recently, toxins with low levels of expression have also been found in Loxosceles venom, such as serine proteases, protease inhibitors (serpins), hyaluronidases, allergen-like toxins and histamine-releasing factors. The toxin belonging to the phospholipase-D family (also known as the dermonecrotic toxin) is the most studied class of brown spider toxins. This class of toxins single-handedly can induce inflammatory response, dermonecrosis, hemolysis, thrombocytopenia and renal failure. The functional role of the hyaluronidase toxin as a spreading factor in loxoscelism has also been demonstrated. However, the biological characterization of other toxins remains unclear and the mechanism by which Loxosceles toxins exert their noxious effects is yet to be fully elucidated. The aim of this review is to provide an insight into brown spider venom toxins and toxicology, including a description of historical data already available in the literature. In this review article, the identification processes of novel Loxosceles toxins by molecular biology and proteomic approaches, their biological characterization and structural description based on x-ray crystallography and putative biotechnological uses are described along with the future perspectives in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...